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The synthesis of 3,5-di-O-benzyl-p-pinitol has been stereoselectively accomplished through intramolec-
ular aldolization of 2,6-di-O-benzyl-4-0-methyl-L-lyxo-hexos-5-ulose followed by reduction with NaB-
H(OAc)s. Computational analysis [DFT calculations at the B3LYP/6-31G(d) level] suggests that p-pinitol
in water largely prefers the conformation corresponding to the 'C, one of a a-L-rhamnopyranoside unit,
being thus a good candidate for its mimicking.

© 2008 Elsevier Ltd. All rights reserved.

p-Pinitol is an interesting member of the natural methoxylated
inositol family and has been recognized for its anti-diabetic prop-
erties,! and, more recently, for the ability to modulate the immune
response by interacting with dendritic cells (DCs) maturation.?
Furthermore, the access to selectively protected p-pinitol deriva-
tives represents an important task in view of the synthesis of
potential antitumor agents as (+)-pancratistatin® and some carbo-
cyclic azole nucleoside analogues.* Owing to the formal analogy
between inositol derivatives and monosaccharides, it could also
be possible to substitute a specific member of one family with an
appropriate one of the other family, maintaining not only the over-
all structural requirements but also the biological properties. In
fact, some examples are reported in which modified monosaccha-
rides, easily available in pure enantioform, have been used to sub-
stitute p-myo-inositol frames.> However, to the best of our
knowledge, the reverse replacing possibility has not yet been
exemplified although the class of carbasugars,® in which a methyl-
ene group replaces the ring oxygen atom, constitutes one of the
most popular type of carbohydrate mimetics.”

Looking to the relative orientation of p-pinitol (1) hydroxyl
groups, we suppose 1 to be a possible candidate for mimicking a
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a-L-rhamnopyranose unit (2), that is present in several bio-active
complex saccharides as, for instance, the capsular polysaccharide
repeating unit of some Pneumococcus strains.®

Before planning the synthesis of suitably protected p-pinitol
derivatives, a preliminary computational exploration of the confor-
mational space of 1 and 2 was carried out through DFT calculations
at the B3LYP/6-31G(d) level.® A high number of starting geometries
was prepared, taking into consideration all the degrees of confor-
mational freedom of the molecules. In particular, in the case of 2,
the two chair pyranose forms 'C, and “C; were investigated (Chart
1), together with the different orientations of the four hydroxyl
groups, with particular attention to the formation of intramolecu-
lar hydrogen bonds.

Also for compound 1 ring inversion was investigated consider-
ing the 'C4-like and 4C;-like conformations (Chart 1). In this case,
in addition to the orientation of the hydroxyl groups, the confor-
mational preferences of the methoxy group were considered
through the evaluation of its three different gauche and anti orien-
tations. The energies of the optimized conformers were recalcu-
lated in water by single point calculations, at the same level as
above, using the polarizable continuum model PCM'° to take into
account the influence of the solvent and their percentage contribu-
tion to the overall population was determined at 298 K through the
Boltzmann equation. The conformations of each compound were
grouped into two families, characterized by the ring geometry;
the global minimum of compounds 2 and 1 was a member of
the 'C4 and the 'C4-like families, respectively, while the lowest
energy inverted conformation resulted higher in energy by about
3 and 4 kcal/mol, respectively. Considering the entire families,
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Chart 1.

1.-rhamnopyranose (2) showed a complete preference for the 'C4
geometry, being the overall population of the 4C; family <1%. Ana-
logously, p-pinitol (1) showed a high preference for the C,-like
geometry which resulted populated for >98%.

Considering these conformational results, we approached the
synthesis of 1 through a sequence (Scheme 1) based on the
intramolecular aldol condensation of a partially protected aldo-
hexos-5-ulose, that was recently used!! successfully for the stere-
oselective synthesis of protected inositol derivatives. Starting
material for the synthesis was the known 1,5-methyl bis-glycoside
3, masked form of the 2,6-di-O-benzyl-L-arabino-hexos-5-ulose,
readily obtained from commercially available methyl B-p-galacto-
pyranoside through a previously described synthetic route.'?
The transformation of compound 3 into 4, having the sole OH-3
group in the free form, was achieved efficiently with a three-step
strategy (88% overall yield) involving: (1) the preliminary protec-
tion of the equatorial OH-3 group of 3 through a regioselective
stannylidene acetal-mediated naphthylmethylation (Bu,SnO,
PhCH3 under azeotropic anhydrification followed by NAPBr and
BuyNBr); (2) the methylation of OH-4 (CHsl, DMF, NaH); and (3)
the final selective removal of the naphthylmethyl group with
DDQ in CH3CN—H20

The C-4 epimerization of the derivative 4 was made with a two-
step procedure requiring first the oxidation with the TPAP-NMO
system in CH,Cl, followed by the crude uloside intermediate
reduction (NaBH4/MeOH, rt). The 1,5-bis-methyl glycoside 5,
masked form of the 2,6-di-O-benzyl-4-O-methyl-L-lyxo-hexos-5-
ulose 6, was obtained in high yield after chromatographic purifica-
tion (84% yield over two steps). The complete diastereoselectivity
of the reaction could be reasonably attributed to the presence of
the axial 5-OMe, which allows the hydride to attack only on the
B face shielding the o one. The bis-glycoside 5 was then submitted
to acid hydrolysis (CF3COOH, in 4:1 CH3CN-H,0) giving the 1,5-
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dicarbonylic derivative 6 as a complex mixture of tautomeric
forms. Although the NMR spectra of this compound were not inter-
preted, its structure was firmly proved by the next reaction. Crude
6 was subjected to an intramolecular aldol condensation under
conditions (0.2 equiv of DBU in CH,Cl,) analogous to those previ-
ously reported for similar reactions of 5-ketoaldohexoses,!! giving
with complete diastereoselectivity inosose 7 isolated after flash
chromatography in 51% yield. Interestingly, when the intramole-
cular aldolization was performed with EtsN in the presence of
Yb(OTf)3 in CH,Cl, the isolated yield of 7 increased to 62%. Inosose
7 was then reduced with NaBH(OAc)s under standard condition
(CH3CN, AcOH) and brought to the expected di-O-benzyl-p-pinitol
derivative 8 in 76% yield. This complete stereoselectivity takes
place through an internal hydride delivery as described by Evans
for p-hydroxy ketones.!?

Compounds 4-5 and 7-8 were characterized and their analyti-
cal'* and NMR data,'® determined by 1D and 2D (COSY and HET-
COR) NMR experiments, were in agreement with the proposed
structures. Finally, the p-pinitol (1) was obtained in nearly quanti-
tative yield by hydrogenolysis of 8 over 10% palladium on charcoal
in MeOH. The physico-chemical properties and NMR data of 1 were
identical to those reported.'® The high field (600 MHz) 'H NMR
spectrum in D,0 confirms the calculated conformational prefer-
ences of the compound; in particular, the high value of the J;,
(9.9 Hz), J15 (9.6 Hz), and J5 (9.9 Hz) and the low value of the
J23 (2.8 Hz) and J45 (2.9 Hz) establish four substituents in equato-
rial position for the preferred conformer.

Our next efforts will be oriented to understand if p-pinitol
is truly able to mimic a o-i-rhamnopyranose unit, in view of
the synthesis of pseudotrisaccharide derivatives of the struc-
ture B-np-ManNAcp-(1 — 4)-0-D-Glcp-(1 — 4)-D-pinitol-3-0-PO%",
representing a chemically more stable mimic of the capsular
polysaccharide repeating unit of Streptococcus pneumoniae 19F.
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Scheme 1. Reagents and conditions: (a) (1) Bu,SnO, NAPBr, CH3Ph; (2) CHsl, DMF, NaH; (3) DDQ, CH3CN-H,0 (88%, overall yield). (b) (1) TPAP, NMO, CH,C1,; (2) NaBHy,
MeOH, (84%, over two steps), (¢) 90% aq CFsCOOH/ 4:1 CH3CN-H,0. (d) DBU, CH,C1,, 51% or Et3N, Yb(OTf)3, CH,Cl,, 62%. () NaBH(OAc)s, CH3CN-AcOH, 75%. (f) Hy, Pd/C,

MeOH, quantitative yield.
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